3.7.95 \(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{(d+e x)^{3/2} (f+g x)^2} \, dx\) [695]

Optimal. Leaf size=178 \[ \frac {3 c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g^2 \sqrt {d+e x}}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{g (d+e x)^{3/2} (f+g x)}-\frac {3 c d \sqrt {c d f-a e g} \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{g^{5/2}} \]

[Out]

-(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/g/(e*x+d)^(3/2)/(g*x+f)-3*c*d*arctan(g^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c
*d*e*x^2)^(1/2)/(-a*e*g+c*d*f)^(1/2)/(e*x+d)^(1/2))*(-a*e*g+c*d*f)^(1/2)/g^(5/2)+3*c*d*(a*d*e+(a*e^2+c*d^2)*x+
c*d*e*x^2)^(1/2)/g^2/(e*x+d)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.17, antiderivative size = 178, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {876, 878, 888, 211} \begin {gather*} -\frac {3 c d \sqrt {c d f-a e g} \text {ArcTan}\left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{g^{5/2}}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{g (d+e x)^{3/2} (f+g x)}+\frac {3 c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{g^2 \sqrt {d+e x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/((d + e*x)^(3/2)*(f + g*x)^2),x]

[Out]

(3*c*d*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(g^2*Sqrt[d + e*x]) - (a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x
^2)^(3/2)/(g*(d + e*x)^(3/2)*(f + g*x)) - (3*c*d*Sqrt[c*d*f - a*e*g]*ArcTan[(Sqrt[g]*Sqrt[a*d*e + (c*d^2 + a*e
^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/g^(5/2)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 876

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(d + e*x)^m*(f + g*x)^(n + 1)*((a + b*x + c*x^2)^p/(g*(n + 1))), x] + Dist[c*(m/(e*g*(n + 1))), Int[(d +
e*x)^(m + 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f
 - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && GtQ[p,
 0] && LtQ[n, -1] &&  !(IntegerQ[n + p] && LeQ[n + p + 2, 0])

Rule 878

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(-(d + e*x)^m)*(f + g*x)^(n + 1)*((a + b*x + c*x^2)^p/(g*(m - n - 1))), x] - Dist[m*((c*e*f + c*d*g - b*e
*g)/(e^2*g*(m - n - 1))), Int[(d + e*x)^(m + 1)*(f + g*x)^n*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b,
c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !Intege
rQ[p] && EqQ[m + p, 0] && GtQ[p, 0] && NeQ[m - n - 1, 0] &&  !IGtQ[n, 0] &&  !(IntegerQ[n + p] && LtQ[n + p +
2, 0]) && RationalQ[n]

Rule 888

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[
2*e^2, Subst[Int[1/(c*(e*f + d*g) - b*e*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; Fre
eQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rubi steps

\begin {align*} \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^2} \, dx &=-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{g (d+e x)^{3/2} (f+g x)}+\frac {(3 c d) \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)} \, dx}{2 g}\\ &=\frac {3 c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g^2 \sqrt {d+e x}}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{g (d+e x)^{3/2} (f+g x)}-\frac {(3 c d (c d f-a e g)) \int \frac {\sqrt {d+e x}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{2 g^2}\\ &=\frac {3 c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g^2 \sqrt {d+e x}}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{g (d+e x)^{3/2} (f+g x)}-\frac {\left (3 c d e^2 (c d f-a e g)\right ) \text {Subst}\left (\int \frac {1}{-e \left (c d^2+a e^2\right ) g+c d e (e f+d g)+e^2 g x^2} \, dx,x,\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}\right )}{g^2}\\ &=\frac {3 c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g^2 \sqrt {d+e x}}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{g (d+e x)^{3/2} (f+g x)}-\frac {3 c d \sqrt {c d f-a e g} \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{g^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.37, size = 144, normalized size = 0.81 \begin {gather*} \frac {\sqrt {a e+c d x} \sqrt {d+e x} \left (\sqrt {g} \sqrt {a e+c d x} (-a e g+c d (3 f+2 g x))-3 c d \sqrt {c d f-a e g} (f+g x) \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c d f-a e g}}\right )\right )}{g^{5/2} \sqrt {(a e+c d x) (d+e x)} (f+g x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/((d + e*x)^(3/2)*(f + g*x)^2),x]

[Out]

(Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*(Sqrt[g]*Sqrt[a*e + c*d*x]*(-(a*e*g) + c*d*(3*f + 2*g*x)) - 3*c*d*Sqrt[c*d*f
- a*e*g]*(f + g*x)*ArcTan[(Sqrt[g]*Sqrt[a*e + c*d*x])/Sqrt[c*d*f - a*e*g]]))/(g^(5/2)*Sqrt[(a*e + c*d*x)*(d +
e*x)]*(f + g*x))

________________________________________________________________________________________

Maple [A]
time = 0.16, size = 296, normalized size = 1.66

method result size
default \(\frac {\left (-3 \arctanh \left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) a c d e \,g^{2} x +3 \arctanh \left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{2} d^{2} f g x -3 \arctanh \left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) a c d e f g +3 \arctanh \left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{2} d^{2} f^{2}+2 \sqrt {\left (a e g -c d f \right ) g}\, \sqrt {c d x +a e}\, c d g x -\sqrt {\left (a e g -c d f \right ) g}\, \sqrt {c d x +a e}\, a e g +3 \sqrt {\left (a e g -c d f \right ) g}\, \sqrt {c d x +a e}\, c d f \right ) \sqrt {\left (c d x +a e \right ) \left (e x +d \right )}}{\sqrt {e x +d}\, \sqrt {c d x +a e}\, g^{2} \left (g x +f \right ) \sqrt {\left (a e g -c d f \right ) g}}\) \(296\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^2,x,method=_RETURNVERBOSE)

[Out]

(-3*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*a*c*d*e*g^2*x+3*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c
*d*f)*g)^(1/2))*c^2*d^2*f*g*x-3*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*a*c*d*e*f*g+3*arctanh(g*(
c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*c^2*d^2*f^2+2*((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*c*d*g*x-((a*
e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*a*e*g+3*((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*c*d*f)*((c*d*x+a*e)*(e
*x+d))^(1/2)/(e*x+d)^(1/2)/(c*d*x+a*e)^(1/2)/g^2/(g*x+f)/((a*e*g-c*d*f)*g)^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^2,x, algorithm="maxima")

[Out]

integrate((c*d*x^2*e + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)/((g*x + f)^2*(x*e + d)^(3/2)), x)

________________________________________________________________________________________

Fricas [A]
time = 2.08, size = 457, normalized size = 2.57 \begin {gather*} \left [\frac {3 \, {\left (c d^{2} g x + c d^{2} f + {\left (c d g x^{2} + c d f x\right )} e\right )} \sqrt {-\frac {c d f - a g e}{g}} \log \left (-\frac {c d^{2} g x - c d^{2} f + 2 \, a g x e^{2} - 2 \, \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {x e + d} g \sqrt {-\frac {c d f - a g e}{g}} + {\left (c d g x^{2} - c d f x + 2 \, a d g\right )} e}{d g x + d f + {\left (g x^{2} + f x\right )} e}\right ) + 2 \, \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} {\left (2 \, c d g x + 3 \, c d f - a g e\right )} \sqrt {x e + d}}{2 \, {\left (d g^{3} x + d f g^{2} + {\left (g^{3} x^{2} + f g^{2} x\right )} e\right )}}, \frac {3 \, {\left (c d^{2} g x + c d^{2} f + {\left (c d g x^{2} + c d f x\right )} e\right )} \sqrt {\frac {c d f - a g e}{g}} \arctan \left (\frac {\sqrt {x e + d} \sqrt {\frac {c d f - a g e}{g}}}{\sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e}}\right ) + \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} {\left (2 \, c d g x + 3 \, c d f - a g e\right )} \sqrt {x e + d}}{d g^{3} x + d f g^{2} + {\left (g^{3} x^{2} + f g^{2} x\right )} e}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^2,x, algorithm="fricas")

[Out]

[1/2*(3*(c*d^2*g*x + c*d^2*f + (c*d*g*x^2 + c*d*f*x)*e)*sqrt(-(c*d*f - a*g*e)/g)*log(-(c*d^2*g*x - c*d^2*f + 2
*a*g*x*e^2 - 2*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(x*e + d)*g*sqrt(-(c*d*f - a*g*e)/g) + (c*d*g*x
^2 - c*d*f*x + 2*a*d*g)*e)/(d*g*x + d*f + (g*x^2 + f*x)*e)) + 2*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*(2
*c*d*g*x + 3*c*d*f - a*g*e)*sqrt(x*e + d))/(d*g^3*x + d*f*g^2 + (g^3*x^2 + f*g^2*x)*e), (3*(c*d^2*g*x + c*d^2*
f + (c*d*g*x^2 + c*d*f*x)*e)*sqrt((c*d*f - a*g*e)/g)*arctan(sqrt(x*e + d)*sqrt((c*d*f - a*g*e)/g)/sqrt(c*d^2*x
 + a*x*e^2 + (c*d*x^2 + a*d)*e)) + sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*(2*c*d*g*x + 3*c*d*f - a*g*e)*s
qrt(x*e + d))/(d*g^3*x + d*f*g^2 + (g^3*x^2 + f*g^2*x)*e)]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/(e*x+d)**(3/2)/(g*x+f)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^2,x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}}{{\left (f+g\,x\right )}^2\,{\left (d+e\,x\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/((f + g*x)^2*(d + e*x)^(3/2)),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/((f + g*x)^2*(d + e*x)^(3/2)), x)

________________________________________________________________________________________